

發展局 Development Bureau

BIM-based Rebar Design Optimization and Prefabrication Automation

Prof. Jack C.P. Cheng, Associate Professor Prof. C.M. Chan, Professor Dr. Vincent Gan, Research Assistant Professor

Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology (HKUST) *(Email: cejcheng@ust.hk)*

Technical Seminar

Webinar on Experience Sharing of a Showcase using Prefabricated Rebars Cum Research on BIM-based Rebar Design Optimisation & Automation 21 August 2020

Background of the Project

- Growing academic and industry interests on offsite construction
- Innovative technologies for industry transformation:
 - 1. Standardized and prefabricated components
 - 2. (Semi-)automated construction

Background of the Project

- Hong Kong has policy to support offsite prefabrication.
- This project echoes with the Policy Address, adoption of technology and innovative construction methods to improve productivity and cost-effectiveness.
- Prefabricated steel reinforcement components are encouraged.

The Hong Kong Special Administrative Region of the People's Republic of China The Chief Executive's 2017 Policy Address

III. Diversified Economy

113. The construction industry has been facing the challenges of high construction costs and labour shortage in recent years. Hence, the Government is proactively promoting the adoption of technology and innovative construction methods to improve productivity and cost-effectiveness. For instance, the Government is assisting the industry in establishing large-scale and highly automated steel reinforcing bar prefabrication plants for the production of prefabricated steel reinforcement components for use in construction projects. We will also adopt Building Information Modelling technology in the design and construction of major government capital works projects that are scheduled to start in 2018, and promote the use of this technology in private construction projects. Besides, the new Construction Innovation and Technology Application Centre of the Construction Industry Council will be in operation by the end of this year to provide the latest information on local angoverseas construction technologies and to support their adoption by small and medium enterprises.

Background of the Project

- Echo with the Policy Address, adoption of technology and innovative construction methods to improve productivity and cost-effectiveness.
- Prefabricated steel reinforcement components are encouraged.

recent years. Hence, the Government is proactively promoting the adoption of technology and innovative construction methods to improve productivity and cost-effectiveness. For instance, the Government is assisting the industry in establishing large-scale and highly automated steel reinforcing bar prefabrication plants for the production of prefabricated steel reinforcement components for use in construction projects. We will also adopt

- Traditionally, structural engineers (SE) do not prepare full rebar details for construction.
- Structural analysts only serve the purpose of structural stability and rebar detailing should refer to general detailing drawings, actual rebar details would be pending until construction stage.
- Rebar quantities are provisional quantity and subject to future re-measurement, normally it would be finalized upon structural works completed.

Background of the Project - Wishes

- During the design stage, once structural framing plan completed, rebar models can be generated by automation plug-in
- Rebar details design can be prepared earlier. Rebar drawings can be generated conveniently.
- Rebar bending schedule and rebar quantities can be prepared in BQ in post-tendering stage. No more provisional quantity. It can <u>reduce the re-measurement efforts and argument on final account</u>.
- Rebar models are directly passed to contractors and rebar factories for prefabrication.
- Enhance productivity, effectiveness, quality control, and wastage reduction on site

Human error in manual rebar fabrication

70% of usage in Singapore is in Prefabricated form

Australia uses 100% of its Rebars through Cut and Bend www.engineeringcivil.com

58

Overview of the Project

- 1. To develop an innovative approach for automated clash-free steel reinforcement design optimization.
- 2. To develop an **automated BIM-based framework** to generate the **rebar bending schedule**, **detail drawings**, and **factory machine codes** for rebar prefabrication.

"BIM-based Rebar Design Optimization and Prefabrication Automation" – Jack Cheng, CM Chan, Vincent Gan

60

Scope of the Project

Project Progress

Official Start Date: 17 June 2019		report		3 rd progress report		4 th progress report		report		Final repo Summary , report
Month	2	4	6	8	1	0	12	14	16	5 18
1st Milestone – novel clash-free rebar design optimization										
1.1 BIM model extraction										
1.2 Rebar design optimization										
1.3 Rebar BIM model generation automation from external programs										
1.4 Rebar BIM model generation from optimal design										
2nd Milestone – automated generation of rebar drawings and fabrication machine codes										-
2.1 Automated BIM-based generation of rebar drawings*										
2.2 Rebar schedule compliant with BQ standard*										
2.3 Automated generation of rebar fabrication machine code										
3rd Milestone - pilot project to test and modify the BIM-based development										
3.1 Case study on a typical RC building structure										

• A customized program to be developed to generate the factory machine codes (BVBS) for rebar fabrication

61

發展局 Development Bureau

R&D Progress

1. Clash-free steel reinforcement design:

- 1.1. Optimal design formulation
- 1.2. Rebar design optimization
- 1.3. Parametric clash avoidance solver

2. Automatic rebar prefabrication:

- 2.1. Generation of BVBS
- 2.2. Generation of rebar detail drawings and schedule
- 2.3. API for automated drawing generation

1. Procedure of Design Optimization

• A holistic approach is proposed to optimize the rebar design:

1.1. Optimal Design Formulation

Rebar installation operation process

Buildability optimization:

Subject to a set of design constraints from the Code of Practice for Structural Use of Concrete 2013, e.g., strength, bar spacing.

- 1. Bar spacing is checked for each candidate solution generated
- 2. The strength is also formulated as a code-stipulated constraint
- 3. Other detailing requirements of the reinforcement, such as steel ratio and minimum number of bars, are also satisfied

"BIM-based Rebar Design Optimization and Prefabrication Automation" – Jack Cheng, CM Chan, Vincent Gan

- $\rightarrow \text{Material weight } (\downarrow)$
- Time for typing ([†])

Weight-aggregation:

$$f(w \times Q_{frame} + (1-w) \times C_{frame})$$

1.2. Rebar Design Optimization

• GA-based optimization algorithm is developed to solve the formulation:

y

CombListLC 🛛 💥

2

2

2

2

2

3

Diameter

Steel area

16 201.0619

20 314.1593

25 490.8739

32 804.2477

40 1.2566e...

16 402.1239

20 628.3185

25 981.7477

32 1.6085e...

40 2.5133e...

16 603.1858

20 942.4778

25 1.4726e...

32 2.4127e...

40 3.7699e...

16 804.2477

20 1.2566e...

25 1.9635e...

32 3.2170e...

40 5.0265e...

Number of

rebars

1

2

3

4

5

6

7

8

9

10

11

1.2. Rebar Design Optimization

- Recap of the column rebar design
 - Assumption
 - ① Only one layer of rebar is considered for each side of column
 - 2 Only one type of diameter is used for each side of column (the corner bar is not included)
 - > Workflow
 - ① Establish a database consisting of practical layouts (number of rebars, diameter, steel area)
 - 2 Select a layout for each side (Asx, Asy)
 - ③ Select the diameter of the corner bars (Asc)
 - (4) Conduct shear link design according to the layout of longitudinal rebars

1.2. Rebar Design Optimization

- Rebar design optimization for a beam example •
- Predefine a set of weighting factor (w) and generate • candidate solutions, as follows:

Left

Right

	<u> </u>	`onfi	nurationa	Area	(mm²)
	Ľ	vonnić	gurations	Actual	Required
		L	6T16	1206	1100
	Тор	М	2T16 + 1T12	515	500
		R	4T16 + 3T10	1040	1000
		L	4T16 + 4T10	1118	900
	Bottom	М	2T12 + 4T10	540	500
		R	4T16 + 2T10	961	900
		5	SUM	5380	4900

•••		onfic	urations	Area (mm²) 🔺				
		onng	jurations	Actual	Required			
Left		L	4T20	1257	1100			
	Тор	Μ	2T20 + 2T16	1030	500			
••••		R	2T20 + 4T16	1432	1000			
		L	4T16 + 1T12	917	900			
Right	Bottom	М	4T16 + 1T12	917	500			
		R	4T16 + 1T12	917	900			
		S	SUM	6470	4900			

Co	oficu	rations	Area		
	inigu	lations			
	L	4T32	3217	1100	Left
Тор	М	2T32	1608	500	
	R	2T32 + 1T20	1923	1000	
	L	5T16	1005	900	
Bottom	М	5T16	1005	500	Right
	R	5T16	1005	90	
	SU	М	9763	4900	

1.2. Rebar Design Optimization

• Implementation of automated steel reinforcement design for different types of structural elements

• An Inner GA algorithm is developed to check whether clash-free solution exists for each joint

68

1.3. Parametric Clash Avoidance

- Generalisation and parametrisation of clash avoidance:
- Vertical avoiding approach: (a) Repositioning, (b) bending of rebars, or (c) both
- Horizontal avoiding approach: (a) Repositioning, (b) bending of rebars, or (c) both
- Vertical avoiding distance: repositioning distance of rebars
- Horizontal avoiding distance: repositioning distance of rebars

1.3. Parametric Clash Avoidance

- Generalised and parametrised clash avoidance bending rebar shape
- With given the starting and ending position of rebars,

Minimise total segment length = A' + B + C + B + E'

where the clashes can be resolved

by changing A' & E' to mainly adjust the position of the bends and changing B & C to avoid the clash

1.3. Parametric Clash Avoidance

- A hierarchy tree structure is proposed for maintaining the bending and reshape of rebars
 - The shape code (BS8666) is used
 - From the root straight shape 00 to the other shapes with different combinations of bending types and orientations

香港建築業物料聯會有限公司 HONG KONG CONSTRUCTION MATERIALS ASSOCIATION LIMITED

1.3. Parametric Clash Avoidance

- Illustrative examples
- Automatic generation of rebar BIM model in Dynamo
 - Read inputs from structural analysis software (e.g., Etabs)
 - Inputs in a spreadsheet

TABLE: Beam-Column Connectivity Desgin Summary

	Column	Upper Column	Beam X1	Beam X2	Beam Y1	Beam Y2	BCJ Shear Size	BCJ Shear Spacing
Story	Unique Name	Unique Name	Unique Name	Unique Name	Unique Name	Unique Name	mm	mm
Story4	17		77		113		16	160
Story4	1		65			113	16	160
Story3	18	17	78		114		16	160
Story3	2	1	66			114	16	160
Story2	19	18	79		115		16	160
Story2	3	2	67			115	16	160
Story1	20	19	80		116		16	160
Story1	4	3	68			116	16	160

Illustrative examples

- Illustrative examples
- Automatic generation of rebar BIM model in Dynamo
 - Read inputs from structural analysis software (e.g., Etabs)
 - Inputs in a spreadsheet

AutoSave	off 🖪	5-	≂ design_summ	nary_round	l_column.xls	x - Ex	Ø Search				Chun Lok WONG	
ile Hor	ne Inse	rt Page La	yout Formula	is Dat	a Revie	w View	Developer	Help			6	Share Comments 🙂
×	Calibri B I L	+ 11 2 + ⊞ +	- A^ A ⁺ ≡		や~ 空豆	Wrap Text	General	% 🤊 % %	Conditional Format Formatting * Table *	as Cell Inser	t Delete Format	Sort & Find & Ideas
oboard T ₂	1 - 1 -	Font	51		Alignme	nt	1	Number	Styles	1	Cells	Editing Ideas
		Jx	05									•
A	8	C	D	E	F	G	н	J	ĸ	M	N	0
TABLE: CO	ncrete Bea	im Desgin Sun	nmary Declar Feetlan		Daugh 1		Ter Ber fire	No. of Destants De	Rotters Rev Class	1 - In Calman Class	Lafe Calmin Franci	and Ball Calcula Flore Ball Cale
story	Label	unique Nam	e Design Section	breadti	mm	to. or rop Bai	Top bar size	NO. OI BOTTOM BE	mm	cert surrup size	Leit Surrup Spaci	ing wild stirrup size wild stir
Story4	81	65	B300x600	300	600	4	12	4	16	8	200	8
Story4	B4	77	B300x600	300	600	4	12	4	16	8	200	8
Story4	B13	113	B300x600	300	600	4	12	4	16	8	200	8
Storv4	B25	161	B300x600	300	600	4	12	4	16	8	200	8
Story3	B1	66	B300x600	300	600	4	12	4	16	8	200	8
Story3	B4	78	B300x600	300	600	4	12	4	16	8	200	8
Story3	B13	114	B300x600	300	600	4	12	4	16	8	200	8
Story3	B25	162	B300x600	300	600	4	12	4	16	8	200	8
Story2	B1	67	B300x600	300	600	4	12	4	16	8	200	8
Story2	B4	79	B300x600	300	600	4	12	4	16	8	200	8
Story2	B13	115	B300x600	300	600	4	12	4	16	8	200	8
Story2	B25	163	B300x600	300	600	4	12	4	16	8	200	8
Story1	B1	68	B300x600	300	600	4	12	4	16	8	200	8
Story1	B4	80	B300x600	300	600	4	12	4	16	8	200	8
Story1	B13	116	B300x600	300	600	4	12	4	16	8	200	8
Story1	B25	164	B300x600	300	600	4	12	4	16	8	200	8
-												
f.												
2												•
1 1	leam Co	lumn Wall	Slab Beam-C	Column Co	onnectivity	Beam Cor	nectivity	(+)	14			•
m Lock										Display Se	ettings III I	四 - + 100%
										# trial ac		10012

Illustrative examples

Semi-automatic clash avoidance

CONSTRUCTION **INDUSTRY COUNCIL** 建造業議會

香港建築業物料聯會有限公司 HONG KONG CONSTRUCTION MATERIALS ASSOCIATION LIMITED

Rearrange the position of the rebars

the rebars

After clash avoidance

發展局 Development Bureau

R&D Progress

Clash-free steel reinforcement design:
 1.1. Optimal design formulation
 1.2. Rebar design optimization
 1.3. Parametric clash avoidance solver

2. Automatic rebar prefabrication:

- 2.1. Generation of BVBS
- 2.2. Generation of rebar detail drawings and schedule
- 2.3. API for automated drawing generation

2. Procedure of Prefabrication Automation

香港建築業物料聯會有限公司 HONG KONG CONSTRUCTION MATERIALS ASSOCIATION LIMITED

2.1. Generation of BVBS

Covers all 31 rebar types in the shape code

77

BVBS Bundesverband

BVBS-Richtlinie Datenaustausch von Bewehrungsdaten

2.1. Generation of BVBS

- BVBS (BundesVereinigung der Bausoftware) is the numerical data structure developed for most types of fabrication machines to perform rebar cutting and bending
 - V3.0 published in Sept 2019
 - In German

Der Geometrieblock lautet: Gi100@w90@l300@w45@l424@w-45@l300@w-90@l100@w0@

Der vollständige Datensatz lautet: BF2D@HjTestPDF@c417@ia@p1@1224@n10@e1.087@d12@gB500A@s48@v@ GI100@w90@I300@w45pl424@w-45pl300@w-90@I100@w0@ C65@CRLF (113 Zeichen)

香港建築業物料聯會有限公司 HONG KONG CONSTRUCTION MATERIALS ASSOCIATION LIMITED

2.1. Generation of BVBS

- From IFC-based BIM model to BVBS
- Input: BIM model (Revit / IFC)
- Output: BVBS strings
- Tool:
 - Revit 2020
 - Dynamo 2.1.0

• From IFC-based BIM model to BVBS – extension of IFC schema

• From IFC-based BIM model to BVBS – extension of IFC schema

- <u>Geometry Block</u> in BVBS defines the shape of rebar (Counter clockwise: Positive)
 - Segment length + Angle + Segment length + Angle + Segment length + ...

- Illustrative examples using the developed Dynamo program
- Tool:
 - Revit 2020
 - Dynamo 2.1.0

Circular column joint

"BIM-based Rebar Design Optimization and Prefabrication Automation" – Jack Cheng, CM Chan, Vincent Gan

RC frame structure

Sheets (all)

Two sheets needed for each

香港建築業物料聯會有限公司 HONG KONG CONSTRUCTION MATERIALS ASSOCIATION LIMITED

2.2. Generation of Bar Drawings and Bending Schedules

Automatic generation of rebar schedule and detailed drawing is based on

CONSTRUCTION INDUSTRY COUNCIL 建造單道會 BTM

CIC Building Information Modelling Standards

> for Preparation of Statutory Plan Submissions

•

香港建築業物料聯會有限公司 HONG KONG CONSTRUCTION MATERIALS ASSOCIATION LIMITED

2.2. Generation of Bar Drawings and Bending Schedules

2.2. Generation of Bar Drawings and Bending Schedules

• Beam R. C. Detail - examples

Key elements of Beam R. C. Detail

- View
 - Elevation view
 - Section view
- Annotation
 - Tag : Shape & Spacing(only for stirrups)
 - Dimension
 - Number of legs
 - Section mark
 - Scale

SECTION B

1:25 Scale

B

香港建築業物料聯會有限公司 HONG KONG CONSTRUCTION MATERIALS ASSOCIATION LIMITED

2.2. Generation of Bar Drawings and Bending Schedules

• Beam R. C. Schedule - examples

									R.C	BEAM SC	HEDULE										
La la contra d	BEAM SIZE		REINFORCEMENT											REINFORCEMENT				DIMENSION			
BEAM MARK	(BXD)	ELEV. REFER	a	a1	a2	b	b1	c	d	c	f	9	LINKS 1	LINKS 2	LINKS 3	A	В	C	D		
CTB1	200 x 300	E9	2T20	-	-	~	2T16		1.00	1.20			٠	T10-150(2 LEGS)	·>	2550			1.1		
CTB1a	200 x 300	E9	2T20			- 40 C	2T16		-				د	T10-150(2 LEG8)	>	2550			1.14		
CTB51	200 x 600	E9a	2T20	2120	2120	2T20	-	1.0.0			-	T10-225 E.F.	<	T10-150(2 LEGS)	>	1000			1		
CTB54	200 x 600	E9a	2T20	2120	2T20	2T20		· · · · ·				T10-225 E.F.	<	T10-150(2 LEGS)	>	1000		- e	1		
TB2	200 x 300	E10	2T16	1		2T16	-		×	1.00	~		٤	T10-200(2 LEGS)	>				1.1		
TB3	400 x 600	E5	4T25		- 74	4T25	+	4T25	4T25	4T25	4120		<	T10-200(4 LEGS)	>	- 4	1300	1000			
TB4	400 x 600	E4	4T25	10	16.1	4T25		1.4	4125		4120	-	<	T10-200(2 LEGS) TORSIONAL LINKS + T10	>	1.	1000	1800	1		
TB5	400 x 600	E4	4T25	-	-	4T25	-	-	4T25	1.00	4120		<	T10-200(2 LEGS) TORSIONAL LINKS + T10	>	-	1800	1800			
TB6	400 x 600	E4	4T25	1.20		4T25		1.00	4T25	1.6	4120	1.21	۰	T10-200(2 LEGS) TORSIONAL LINKS + T10		1.1	1800	1800	1		
TB7	400 x 600	E4	4T25	1.1		4T25		•	4T25	197	4T20	11.1	<u> </u>	T10-200(2 LEG9) TORSIONAL LINKS + T10	>		1800	1800	1		
TB8	400 x 600	E4	4T25	12	161	4T25	-		4T25		4120	1	c	T10-200(2 LEGS) TORSIONAL LINKS + T10		1.0	1800	1800	1		
TB9	400 x 600	E4	4T25	-	-	4T25	-		4T25	1.0	4T20	-	c	T10-200(2 LEGS) TORSIONAL LINKS + T10	>		1800	1800	1		
TB10	400 x 600	E4	4T25	12	115	4T25	-		4T25	1.6	4120	1	¢	T10-200(2 LEGS) TORSIONAL LINKS + T10	·>	100	1800	1000	- 1		
TB11	400 x 600	E4	4T25		-	4T25	•		4T25	127	4T20	1	·	T10-200(2 LEG8) TORSIONAL LINKS + T10	>	151	1000	1300			
TB12	400 x 600	E3	4T25		14	4T25			4T25		4T20	~	«	T10-200(4 LEGS)	>				177.0		
TB13	250 x 600	E10	2T25			2T25	· · · · · ·				- 27 -	-	<	T10-200(2 LEGS)	8T16-200(2 LEGS)			1.4	-		
TB14	250 x 600	E10	2T25		-	2T25	~			-		-	e	T10-200(2 LEGS)	8T16-200(2 LEGS)		1		-		

Key parameters of R.C. Beam Schedule

- Beam mark & size
- Elevation reference
- Reinforcement
 - Location
 - Shear links
- Dimension

Changed key elements of Beam R. C. Detail (Schedule version)

- Annotation
 - Size & quantity => Location
 - Center line of support
 - No section mark
 - No scale

2.2. Generation of Bar Drawings and Bending Schedules

BINDERS:

T10-200

- HORIZONTAL SPACING

LEGEND:

-1st LAYER -2nd LAYER -VERTICAL BAR

BINDER

-HORIZONTAL BAR

TYPICAL DETAIL OF WALL

CONFINED AREA

• Wall R. C. Detail Legend

• R. C. Wall Schedule

Key elements of WALL R. C. Detail

- Dimensions
- Section marks

Different from beam details

					(
FLOOP	WALL MARK	CONCRETE	THICKNESS	VEDTICAL DADS	HORIZONTAL	BIND	ER	STEEL RATIO
FLOOR	WALL MARA	GRADE	(mm)	VERTICAL BARS	BARS	HORIZONTAL	VERTICAL	(%)
3/F	W1	C60	250	T40-150	T10-150	T12-300	150	3.4
3/F	W2	C60	250	T25-125	T12-125			1.3
3/F	W3	C60	200	T20-125	T10-100			1.3
3/F	W4	C60	150	T20-150	T10-150			1.4
3/F	W4	C60	200	T20-125	T10-100			1.3
3/F	W5A	C60	200	T20-125	T10-100			1.3
3/F	W5A	C60	250	T25-125	T12-125			1.6
3/F	W5B	C60	150	T20-100	T10-150	T12-200	150	2.1

2.2. Generation of Bar Drawings and Bending Schedules

• Proposed framework for generation of detailing drawings and rebar bending schedule:

2.3. API for Automated Drawing Generation

- Obtain views
 - Obtain the horizontal component
 - Predefine functions to determine locations

2.3. API for Automated Drawing Generation

- Obtain views
 - · After obtaining bounding boxed, functions of location determination are called
 - Origins and axis need to be adjusted

CONSTRUCTION INDUSTRY COUNCIL 建造業議會

- anne da a

SD COPY

944175 0040000000 50006

92

(10 11110)

2.3. API for Automated Drawing Generation

- As the target output, sample drawing is generated based on a joint model
- Tools:
 - Revit API 2020
 - Revit SDK 2020
 - Cutting and placing views

"BIM-based Rebar Design Optimization and Prefabrication Automation" – Jack Cheng, CM Chan, Vincent Gan

Circular column joint model

Sample drawing from proposed framework in accordance with BIM standard

發展局 Development Bureau

CONSTRUCTION INDUSTRY COUNCIL 建造業議會

Future Agenda

Future Work

- Design optimization:
 - 1. To carry out design optimization for shear walls using genetic algorithms
 - 2. To enhance the automatic parametric clash avoidance solver and extend its applicability to different RC joints
- Automated prefabrication:
 - 1. To verify the BVBS code generation from rebar BIM models (testing in prefabrication yard)
 - 2. To improve automatic generation of rebar drawings (testing with pilot site from HKHA)
- Pilot Study:
 - 1. Identify and decide the pilot site (e.g., Wing Tai Road, HA projects)

香港建築業物料聯會有限公司 HONG KONG CONSTRUCTION MATERIALS ASSOCIATION LIMITE

Relevant R&D – Design of Modular High-rise

Combination of modular flats for each wing

 $\sum_{l=1}^{L} F_w^l = F_w^1 + F_w^2 + \dots + F_w^L$ Design constraints for wing:
• Topology
• Dimension of wing

Geometric combination of wings and connections

 n_1

"BIM-based Rebar Design Optimization and Prefabrication Automation" – Jack Cheng, CM Chan, Vincent Gan

7 Variables & 6 Design Constraints

Design constraints for entire layout:

- Site constraint
- Number of occupant
- Accessibility (distance between stair and flat)
- Building shape (area and side aspect ratio)

➔ Generative Design

(Source: Gan, V.J.L., Wong, H.K., Tse, K.T., Cheng, J.C.P., Lo, I.M.C., and Chan, C.M. 2019) "Simulationbased evolutionary optimization for energy-efficient layout plan design of high-rise residential buildings." Journal of Cleaner Production, 231, 1375-1388.)

香港建築業物料聯會有限公司 HONG KONG CONSTRUCTION MATERIALS ASSOCIATION LIMITE

Relevant R&D – BIM for Sustainable Modular Buildings

96

Collaborators

We appreciated the support from government department, contractor, rebar manufacturers, and professional organizations.

- Hong Kong Housing Authority
- Chun Wo Development Holdings Ltd.
- Shiu Wing Steel Ltd.
- VSC Construction Steel Solutions Ltd.
- MES Service Ltd.
- Global BIM Center of Excellence
- Institution of Civil Engineering Surveyors (ICES)

俊和發展集

CHUN WO DEVELOPMENT HOLDINGS LIMITED

chartered ICES 97

發展局 Development Bureau

BIM-based Rebar Design Optimization and Prefabrication Automation **THANK YOU! Prof. Jack C.P. Cheng, Associate Professor Prof. C.M. Chan, Professor Dr. Vincent Gan, Research Assistant Professor**

Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology (HKUST) *(Email: cejcheng@ust.hk)*

Technical Seminar

Webinar on Experience Sharing of a Showcase using Prefabricated Rebars Cum Research on BIM-based Rebar Design Optimisation & Automation 21 August 2020

